Joint Imaging and Management in Haemophilia
Objectives

• Review Imaging options in Haemophilia Arthropathy

• Role of imaging in joint care

• Expand on the use of Ultrasound
 – Utility of US in decision making process

• Demonstration of Ultrasound of the Elbow
Introduction

• Recurrent Haemarthropathy is a destructive process that often results in debilitating joint disease and functional impairment

• Pathophysiological mechanism not entirely understood and likely multifactorial
 – Direct effects of blood leading to chondrocyte damage and inflammatory arthritis
 – Changes to biomechanics of joints arising from altered bone formation

• Episodes of bleeding often begin in early life
 – Elbow: age 2-5

• Haemophiliac arthritis contributes the greatest morbidity and cost

• Most common sites include the elbow, ankle, and knee
What’s the purpose of imaging Joints?

• Detect site and severity of joint damage

• Detect changes prior to irreversible damage
 – Predict the risk of further bleeding

• Provide a tailored approach to the management of HA

• Evaluate the joint for an acute haemarthrosis

• Monitor effects of treatment:
 – What should be the schedule
 • Adults: 12 monthly
 • Children: 6 monthly
Plain Radiography

- Excellent assessment of late disease
 - Valuable in the planning for joint replacement surgery

- Poor sensitivity for early changes

- Limited visualisation of haemarthrosis

- No ability to visualise synovitis

Has limited role in the modern approach to evaluating treatment efficacy

- There are two scales to evaluate changes on radiographs
Scoring scales

Table 1. The Arnold-Hilgartner Scale

<table>
<thead>
<tr>
<th>Stage</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal joint</td>
</tr>
<tr>
<td>I</td>
<td>No skeletal abnormalities, soft tissue swelling is present</td>
</tr>
<tr>
<td>II</td>
<td>Osteoporosis and overgrowth of the epiphysis, no cysts, no narrowing of the cartilage space</td>
</tr>
<tr>
<td>III</td>
<td>Early subchondral bone cysts, squaring of the patella, widened notch of the distal femur or humerus, preservation of the cartilage space</td>
</tr>
<tr>
<td>IV</td>
<td>Findings of stage III, but more advanced; narrowed cartilage space</td>
</tr>
<tr>
<td>V</td>
<td>Fibrous joint contracture, loss of the joint cartilage space, extensive enlargement of the epiphysis, substantial disorganization of the joint</td>
</tr>
</tbody>
</table>

Table 2. The Pettersson Score

<table>
<thead>
<tr>
<th>Radiographic Finding</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoporosis</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td>Enlarged epiphysis</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td>Irregular subchondral surface</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Partly involved</td>
<td>1</td>
</tr>
<tr>
<td>Totally involved</td>
<td>2</td>
</tr>
<tr>
<td>Narrowing of joint surface</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Joint space > 1 mm</td>
<td>1</td>
</tr>
<tr>
<td>Joint space < 1 mm</td>
<td>2</td>
</tr>
<tr>
<td>Subchondral cyst formation</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>1 cyst</td>
<td>1</td>
</tr>
<tr>
<td>> 1 cyst</td>
<td>2</td>
</tr>
<tr>
<td>Erosion of joint margins</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td>Gross incongruence of articulating bone ends</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Slight</td>
<td>1</td>
</tr>
<tr>
<td>Pronounced</td>
<td>2</td>
</tr>
<tr>
<td>Joint deformity (angulation or displacement or both between articulating bones)</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Slight</td>
<td>1</td>
</tr>
<tr>
<td>Pronounced</td>
<td>2</td>
</tr>
</tbody>
</table>

• The A-H Stage is determined by most severe feature present
 • Easy to use

• The Pettersson Score is an additive score
 • Highest score is 13
 • Discrimates change best
 • Higher interobserver reliability
 • Recommended by WHF
Typical X-ray Projections
MRI

• Widely considered the Gold standard modality in evaluation of HA
 – Albeit for the elbow can be less sensitive
 – Clinical significance of early changes in HA yet to be established

• Can differentiate between simple effusion and haemorrhage

• Validated scoring system developed
 – International Prophylaxis Study Group scale
 – Separates soft tissue from osteochondral disease
 • As such will likely give meaningful insight into pathophysiology of HA progression

 – Reflects progression from early disease to advanced arthropathy
 • Although performs relatively poorly at differentiating mild from moderate and severe disease

• Limitations are;
 – Expense
 – Access
 – Need for sedation in children

Cross S, et al. Semin Ultrasound CT MRI 2013; 34:516-524
Ultrasound

- Allows the evaluation of soft tissue changes in HA including:
 - Reasonable ability to differentiate effusion from haemarthrosis
 - Useful in the evaluation of an acutely swollen joint
 - Inexpensive, accessible, fast, real time, dynamic and no sedation required
 - Does not provide detailed evaluation of cartilage or bone

<table>
<thead>
<tr>
<th>Children US vs MRI</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial Hypertrophy</td>
<td>>90%</td>
<td>>90% knees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% ankles</td>
</tr>
<tr>
<td>Effusion and Haemarthrosis</td>
<td>70% ankles</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>>90% knees</td>
<td></td>
</tr>
<tr>
<td>Haemosiderin deposition</td>
<td>100%</td>
<td>67% ankles</td>
</tr>
<tr>
<td>Cartilage damage</td>
<td>>85%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Useful in planning prophylaxis and assessing early treatment efficacy
Ultrasound in the detection of subclinical disease

- Subclinical joint bleeds do occur
 - Despite compliance with prophylactic factor replacement
 - More common in those with inhibitors

- Early detection may provide opportunity to intervene prior to irreversible joint damage

- Evaluated the ability of US (HEAD-US protocol) to detect subclinical disease

- Studied 167 patients (976 joints) with no history of joint bleeds

- Found;
 - 25% of patients with HJHS score of 0 had evidence of joint changes
 - Chondral changes were the most common abnormalities detected
 - The most affected joint appears to be the ankle
 - There were no predictors towards joint changes identified in patient characteristics

Ultrasound is a sensitive tool in detecting joint changes relating to subclinical disease
Ultrasound in Acute Setting

• Currently the general approach to acute swollen joint is empiric
 – Patient usually decides whether to;
 • Administer factor replacement therapy
 • Use conservative measures if chronic arthritis presumed the cause of pain

• Symptoms of an acute bleed are non-specific
 – Haemarthrosis vs haemophilic arthritis

• Rapid point-of-care US has a role in this setting
 – Can readily distinguish simple from complex (bloody) effusion
How to distinguish blood from synovium

- attached to the walls (peripheral)
- irregular margins
- some vasculature may be detected

- detached from the walls (central)
- smooth margins
- free of color flow signals at Doppler imaging
Ultrasound in Acute Setting

• Ceponis, et al, evaluated 30 patients who presented to HA clinic with acute joint pain

 – Assessment within 48 hrs of pain /swelling onset
 • Physical examination
 • Ultrasound

 – Patients proceeded with usual care

 – Treatment adjusted according to US findings

Ultrasound in Acute Setting

Findings

- 40 episodes of acute joint pain were evaluated
 - Median time to evaluation 10 hr
 - 70% assessed within 24 hrs
 - Patient perceived aetiology correct in only ≈ 33%
 - Physician perceived diagnosis not much better
 - Correct in only 18 or 40 episodes
 - Agreement between patient and physician occurred in only 9 cases!!!
 - Of which only 4 were confirmed on US as correct

Ultrasound in Acute Setting

• Impact on Decision Making
 – Directly changed treatment in 29 of 40 episodes of acute joint pain
 • Symptoms poorly controlled for painful episodes at time of presentation to clinic
 • US guided decision resulted in symptom improvement in 65% of cases
 • In confirmed non-bleeding, factor replacement was not initiated in 12 or discontinued in 10
 – Prompted other conservative interventions such as Physiotherapy, NSAIDs, and/or I/A steroid injections
 • Study probably under-estimates the episodes of ‘arthritic’ pain that were instead haemarthrosis – representing a further missed opportunity to prevent further damage
Ultrasound in Acute Setting

• Case 1:
 – 37yo male Haemophilia A
 – Knee pain, warmth and swelling
 – Thought a bleed
 – US synovitis
 • Non compressible
 • Positive power Doppler signal

• Case 2
 – 23yo severe Haemophilia B
 – Ceased prophylaxis, choosing on demand treatment
 • ‘most are ‘arthritic’ pains
 – Painful ankle
 – US: Acute haemarthrosis
 • Complex effusion
 • Compressable
 • No power Doppler signal
 – Confirmed on aspiration
 – Commenced Prophylaxis again
Ultrasound

• Furthermore, in most episodes of haemarthrosis

 • Persistent effusion is noted on Ultrasound evaluation despite resolution of symptoms
 – Lack of agreement in 57.8% between symptoms and US findings

 • Effusion typically resolves after 7 days post bleed

Questioning duration of factor replacement therapy post bleed

• If effusion persists >2 weeks after acute bleed then presume fluid relates to chronic synovial hypertrophication / synovitis

In summary, in appears that the current practice of decision making based on patient and/or physician opinion is inadequate for modern haemophilia care
Ultrasound Protocols

• Numerous Ultrasound protocols proposed
 – Aim is to address operator-dependent evaluation by providing a standardised approach

• HEAD US
 – Haemophilia Early Arthritis Detection with UltraSound
 – Simple scanning procedure and scoring method
 – Aims:
 • Increase sensitivity to detect early signs of joint involvement
 • Easy technique
 • Quick to perform
 • Integrate US in the routine practice of Haemophilia centers

HEAD US

- Procedure evaluates:
 - Joint recesses to assess for an effusion and synovial thickening
 - 1 view of the cartilage and bone to assess for damage

- Additive scoring method
 - Synovium
 - Cartilage
 - Bone
 - Maximum score of 8 for each joint

<table>
<thead>
<tr>
<th>Disease activity (synovitis)</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertrophic synovium</td>
<td></td>
</tr>
<tr>
<td>0. Absent/Minimal</td>
<td>0</td>
</tr>
<tr>
<td>1. Mild/Moderate</td>
<td>1</td>
</tr>
<tr>
<td>2. Severe</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease damage (articular surfaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage</td>
</tr>
<tr>
<td>0. Normal</td>
</tr>
<tr>
<td>1. Echotexture abnormalities, focal partial/full-thickness loss of the articular cartilage involving <25% of the target surface*</td>
</tr>
<tr>
<td>2. Partial/full-thickness loss of the articular cartilage involving at least ≤50% of the target surface*</td>
</tr>
<tr>
<td>3. Partial/full-thickness loss of the articular cartilage involving >50% of the target surface*</td>
</tr>
<tr>
<td>4. Complete cartilage destruction or absent visualization of the articular cartilage on the target bony surface*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Normal</td>
</tr>
<tr>
<td>1. Mild irregularities of the subchondral bone with/without initial osteophytes around the joint</td>
</tr>
<tr>
<td>2. Deranged subchondral bone with/without erosions and presence of prominent osteophytes around the joint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-observer</th>
<th>k</th>
<th>95% CI</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>0.80</td>
<td>0.70–1.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Knee</td>
<td>0.81</td>
<td>0.69–0.78</td>
<td>0.02</td>
</tr>
<tr>
<td>Ankle</td>
<td>0.66</td>
<td>0.21–0.91</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intra-observer</th>
<th>k</th>
<th>95% CI</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>0.80</td>
<td>0.61–0.98</td>
<td>0.10</td>
</tr>
<tr>
<td>Knee</td>
<td>0.80</td>
<td>0.67–0.94</td>
<td>0.07</td>
</tr>
<tr>
<td>Ankle</td>
<td>0.69</td>
<td>0.46–0.93</td>
<td>0.12</td>
</tr>
</tbody>
</table>

K values are reported as weighed with linear weights. 95% CI, 95% confidence interval; SE, standard error.

HEAD US

• A: Evaluate the fossa for effusion / synovitis
 – Medial = coronoid fossa
 – Lateral = radial fossa

• B: Evaluate cartilage of distal humeral epiphysis
 – Medial = concave trochlea
 – Lateral = capitellum

• C: Evaluate radial-capitellar joint
 – Assess radial fossa and annular fossa for effusion / synovitis
 – Assess cartilage and bone

• D: Evaluate the trochlea-ulnar joint
 – Assess coronoid fossa for effusion / synovitis
 – Assess cartilage and bone

• E: Evaluate posterior elbow joint
 – Assess the olecranon fossa for effusion / synovitis

HEAD-US Scoring Scale – interpretation rules

ELBOW – joint distension

GRADE-0

- Concavity
- No synovium on the floor
HEAD-US Scoring Scale – interpretation rules

ELBOW – joint distension

GRADE-0

- capitellum
- olecranon
- trocheal

First Haemophilia Ultrasound Global Forum
Sorrento – April 06, 2017
ELBOW – joint distension

GRADE-I

convexity

concavity

synovium on the floor

HEAD
CAPITELLUM

OLECRANON
TROCHLEA

HEAD-US Scoring Scale – interpretation rules

First Haemophilia Ultrasound Global Forum
Sorrento – April 06, 2017
HEAD-US Scoring Scale – interpretation rules

ELBOW – joint distension

GRADE-I

POSTERIOR ELBOW

First Haemophilia Ultrasound Global Forum
Sorrento – April 06, 2017
HEAD-US Scoring Scale – interpretation rules

ELBOW – joint distension

GRADE-II

continuous involvement over the anterior aspect of the joint

distension of the annular recess

convexity

synovium on the floor
HEAD-US Scoring Scale – interpretation rules

ELBOW – joint distension

GRADE-II

POSTERIOR ELBOW

olecranon

joint line

humerus

First Haemophilia Ultrasound Global Forum
Sorrento – April 06, 2017
HEAD US